

High Voltage Rectifiers

 $V_{\text{RRM}} = 24000 V$ $I_{\text{F(AV)M}} = 2.0 A$

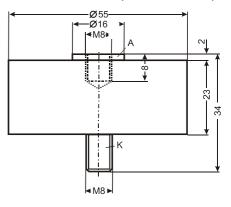
V _{RRM} V	Standard Types	Power Designation	
24000	UGE 3126 AY4	Si-E 9000 / 4000-0.7	

Symbol	Conditions		Rating	IS
F(RMS)		Т 4500	5	A
F(AV)M	air self cooling,	T _{amb} = 45°C - without cooling plate	0.8	А
		- with colling plate	1.0	A
	forced air cooling	g:		
	v = 3 m/s,	$T_{amb} = 35^{\circ}C$		
		 without cooling plate 	1.4	A
		 with cooling plate 	1.7	A
	oil cooling,	$T_{amb} = 35^{\circ}C$		
	0,	- without cooling plate	2.0	А
		- with cooling plate	2.0	A
P _{RSM}	$T_{(vj)} = 150^{\circ}C;$	t _p = 10 μs	1.6	kW
I _{FSM}	non repetitive, 50 c/s (for 60 c/s add 10%)			
	$T_{(vj)} = 45^{\circ}C;$	$t_p = 10 \text{ ms}$	70	A
	T _(vj) = 150°C;	t _p = 10 ms	60	A
T _{amb}			-40+150	°C
T _{stg}			-40+150	°C
T _(vj)			150	°C
Weight			127	g

Symbol	Conditions		Characteristic	Values
I _R	T _(vj) = 150°C;	$V_{\rm R} = V_{\rm RRM}$	≤ 1	mA
V _F	$I_F = 3 A$ $T_{(vj)} = 25^{\circ}C$		18	V
V _{to}	$T_{(vj)} = 150^{\circ}C$		12	V
r _T	$T_{(vj)} = 150^{\circ}C$		1.8	Ω
а	f = 50Hz		5 x 9,81	m/s²
M _d			8	Nm

Features

- · Hermetically sealed Epoxy
- Use in oil
- Avalanche characteristics


Applications

- X-Ray equipment
- · Electrostatic dust precipitators
- Electronic beam welding
- Lasers
- · Cable test equipment

Advantages

- · Simple mounting
- Improved temperature and power cycling
- Reduced protection circuits
- · Series and parallel operation

Dimensions in mm (1 mm = 0.0394")

Data according to IEC 60747-2

IXYS reserve the right to change limits, test conditions and dimensions.

UGE 3126 AY4

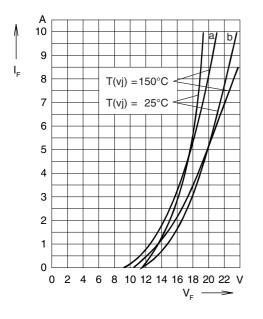


Fig. 1: Forward characteristics

Instantaneous forward current I_F as a function of instantaneous forward voltage drop V_F for junction temperature T_(vj) = 25°C and T_(vj) = 150°C a = Mean value characteristic b = Limit value characteristic

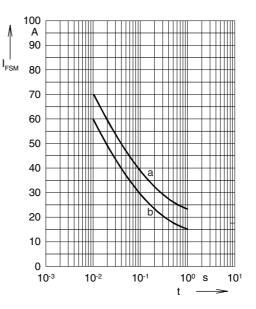
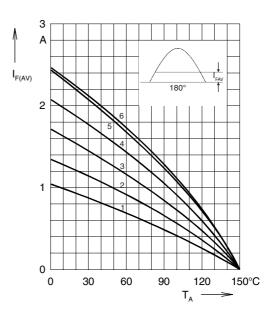



Fig. 2: Characteristics of maximum permissible current The curves show the non repetitive peak one cycle surge forward current I_{FSM} as a function of time *t* and serve for rating protective devices.

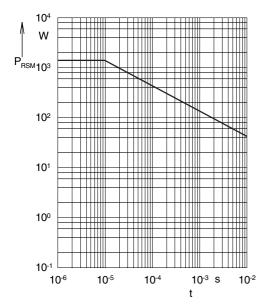

 $\begin{array}{ll} a = \mbox{Initial state} & T_{(vj)} = \ 45^{\circ}\mbox{C} \\ b = \mbox{Initial state} & T_{(vj)} = \ 150^{\circ}\mbox{C} \\ \end{array}$

Fig. 4: Load diagramm

Mean forward current $I_{F(AV)}$ of <u>one</u> module for a sine half wave for various cooling modes as a function of the cooling medium temperature T_{amb} for a resistive load (horizontal mounting).

	Cooling modes			
	1 = air self cooling	without	cooling plate	
	2 = air self cooling	with	cooling plate	
	3 = forced air cooling	without	cooling plate	
	4 = forced air cooling	with	cooling plate	
	5 = oil cooling	without	cooling plate	
	6 = oil cooling	with	cooling plate	
_				

Fig. 3: Power loss

Non repetitive peak reverse power loss P_{RSM} as a function of time *t*, $T_{(vj)} = 150^{\circ}C$